viernes, 13 de noviembre de 2009


En clase vimos más videos a cerca del átomo. Pero en esta ocasión nosotros tuvimos que redactar las preguntas relacionandas a los videos, para despues comentarlas en grupo. Estas fueron las mías:
  • ¿Cuántos tipos de átomos hay?
92 tipos de átomos.
  • ¿Qué buscaban los alquimistas?
Trasmutar la materia
  • ¿Quién fue el primer alquimista?
Ernest Rutherford
  • ¿Qué fue lo que investigo Marie Curie?
La radioactividad
  • ¿Qué sucede cuando se introduce el radio dentro de un recipiente con aire?
Se desprenden los gases de nitrógeno e hidrogeno.
  • ¿Qué porcentaje de nitrógeno hay en el aire?
82%
  • ¿Qué es la radioactividad?
Es un fenómeno físico natural, por el cual algunos cuerpos o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, etc.
  • ¿Quién descubrió las propiedades del radio?
Marie Curie
  • ¿Cuál es la cantidad de átomos en la naturaleza?
Un 1 seguido de 70 ceros
  • ¿Qué elemento es la piedra filosofal?
El Radio.
  • ¿Por qué variaba el peso de los átomos?
Por que aun no conocían que dentro del átomo se encontraba el neutrón.
  • ¿Quién descubrió el neutrón?
James Chadwick.
  • ¿El átomo se puede pesar?
Si.
  • ¿Qué adhiere a los protones dentro del átomo?
Lo que denominaron una nueva fuerza nuclear fuerte.

  • ¿Por qué brilla el sol?
Por la fusion de átomos de hidrogeno y helio que se transforma en helio.


Esta es una investigación referente a las preguntas. Que para mi es necesaria:::::

* Alquimia: Es una antigua práctica protocientífica y una disciplina filosófica que combina elementos de la química, la metalurgia, la física, la medicina, la astrología, la semiótica, el misticismo, el espiritualismo y el arte.

Actualmente es de interés para los historiadores de la ciencia y la filosofía, así como por sus aspectos místicos, esotéricos y artísticos. La alquimia fue una de las principales precursoras de las ciencias modernas, y muchas de las sustancias, herramientas y procesos de la antigua alquimia han servido como pilares fundamentales de las modernas industrias química y metalúrgica.

* Radioactividad: Es un fenómeno natural o artificial, por el cual algunas sustancias o elementos químicos llamadas radiactivos, son capaces de emitir radiaciones, las cuales tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, etc. Las radiaciones emitidas por las sustancias radiactivas son principalmente partículas alfa, partículas beta y rayos gamma. La radioactividad es una forma de energía nuclear, usada en medicina (radioterapia)y consiste en que algunos átomos como el uranio, radio y torio son “inestables”, y pierden constantemente partículas alfa, beta y gamma (rayos X).

En este proceso, los núcleos de los átomos de los elementos se desintegran, con formación de nuevos núcleos que corresponden a nuevos elementos y liberación de energía.

El proceso de RADIOACTIVIDAD puede ser natural (en los núcleos de los átomos de los elementos inestables) y artificial (en los núcleos de los átomos de los elementos estables que necesitan ser bombardeados con partículas).

La radiactividad natural es el proceso mediante el cual los núcleos pesados e inestables de algunos materiales radiactivos se desintegran de forma espontánea y producen nuevos núcleos de nuevos elementos y liberación de energía.

La radiactividad artificial Consiste en la ruptura de los núcleos de átomos estables a través del bombardeo con partículas ligeras aceleradas, dando origen a nuevos núcleos que corresponden a nuevos elementos.

Rutherford logró en 1919, la primera transmutación artificial, al bombardear con partículas alfa, núcleos de átomo de nitrógeno

En 1898, los esposos Curie dedicados al estudio de la radiación observada por Becquerel (físico) descubrieron dos nuevos elementos radiactivos: el Polonio y el Radio, caracterizados por:

- Ionizar gases

- Impresionar placas fotográficas

- Originar destellos de luz en algunas sustancias.

CARACTERÍSTICAS DEL FENÓMENO RADIACTIVO.

La emisión de radiaciones por parte de un material radiactivo no depende del estado de libertad o combinación en que se encuentre, es decir, puede estar como una sustancia simple o como parte de un compuesto y este hecho no incidirá en tales emisiones.

La radiación es independiente de factores que intervienen en las reacciones químicas.

Las radiaciones pueden impresionar placas fotográficas, atravesar materiales opacos, ionizar los gases y producir reacciones químicas.

NATURALEZA DE LA RADIOACTIVIDAD

Las radiaciones pueden ser:

- Rayos Alfa (a)

Estos rayos están formados por partículas materiales que presentan dos unidades de carga eléctrica positiva y cuatro unidades de masa. Son ligeramente desviados por la acción de fuerzas magnéticas intensas. Pueden ionizar los gases y penetrar en la materia. Son detenidos o absorbidos cuando se pone ante ellos una lámina metálica. Su velocidad inicial varía desde 109 cm. /s hasta 2 x 109 cm. /s.

- Rayos Beta (b)

Las partículas que conforman a los Rayos Beta son de una masa menor a la de los rayos alfa y son de unidad de carga negativa. Se proyectan a grandes velocidades, aunque ésta depende de la fuente de procedencia y en ocasiones son emitidos a una velocidad próxima a la de la luz (3×1010 cm. /s).

- Rayos Gamma (g)

Su naturaleza es diferente a los rayos alfa y beta, puesto que no experimentan desviación ante los campos eléctricos y/o magnéticos. A pesar de que tienen una menor longitud de onda que los rayos X, actúan como una radiación electromagnética de igual naturaleza. Pueden atravesar láminas de plomo y recorre grandes distancias en el aire. Su naturaleza es ondulatoria y no tiene carga eléctrica, ni masa. Su capacidad de ionización es más débil en comparación con los rayos alfa y beta.


* La Nueva fuerza nuclear fuerte:

La interacción nuclear fuerte es una de las cuatro "fuerzas" o interacciones fundamentales que el modelo estándar de la física establece para explicar las interacciones entre las partículas conocidas.

Esta fuerza es la responsable de mantener unidos a los nucleones (protón y neutrón) que coexisten en el núcleo atómico, venciendo a la repulsión electromagnética entre los protones que poseen carga eléctrica del mismo signo (positiva) y haciendo que los neutrones, que no tienen carga eléctrica, permanezcan unidos entre sí y también a los protones.

Los efectos de esta fuerza de interacción sólo se aprecian a distancias muy pequeñas (menores a 1 fm), del tamaño de los núcleos atómicos y no se perciben a distancias mayores a 1 fm. A esta característica se le conoce como ser de corto alcance, en contraposición con la fuerza gravitatoria o la fuerza electromagnética que son de largo alcance (realmente el alcance de estas dos es infinito).

Antes de la década de los 1970 se suponía que el protón y el neutrón eran partículas fundamentales. Entonces la expresión fuerza fuerte se refería a lo que hoy en día se denomina fuerza nuclear o fuerza fuerte residual.

Lo observable en los experimentos realizados en esas fechas eran los efectos que esa fuerza producía sobre los componentes del núcleo, efectos residuales de la fuerza fuerte que actúa sobre los hadrones, ya sean bariones o mesones.

Esta fuerza fuerte se postuló de forma teórica para compensar las fuerzas electromagnéticas repulsivas que se sabía que existían en el interior del núcleo al descubrir que este estaba compuesto por protones de carga eléctrica positiva y neutrones de carga eléctrica nula. Se postuló también que su alcance no podía ser mayor que el propio radio del núcleo para que otros núcleos cercanos no la sintieran, ya que si tuviera un alcance mayor todos los núcleos del universo se habrían colapsado para formar un gran conglomerado de masa nuclear. Se la denominó en aquel entonces fuerza fuerte.

Tras el descubrimiento de los quarks en 1963, los científicos ajustaron la teoría para que la fuerza actuara realmente sobre los quarks y gluones que formaban protones y neutrones. Durante algún tiempo después se denominó fuerza fuerte residual a la que anteriormente se había llamado fuerza fuerte, llamando a la nueva interacción fuerte fuerza de color.


* ¿Por qué brilla el sol?

El Sol brilla porque desprende energía (radiación) en todas direcciones. Esta radiación toma la forma de luz y calor. La radiación sale del Sol casi uniformemente en todas direcciones. Se demora cerca de unos ocho minutos para que la luz del Sol haga su recorrido hacia la Tierra

Al igual que otras estrellas, el Sol está compuesto principalmente de hidrógeno gaseoso. La temperatura de la superficie del Sol es de casi 10,000 grados F, pero aumenta hasta casi 27,000,000 grados F en su centro. La temperatura y presión son tan altas en el núcleo que ocurren las reacciones nucleares. Los átomos de Hidrógeno chocan unos con otros y se pegan para formar Helio, y liberan una cantidad enorme de energía durante este proceso.


* La fusión nuclear

Es el proceso por el cual varios núcleos atómicos de carga similar se unen para formar un núcleo más pesado. Se acompaña de la liberación o absorción de energía, que permite a la materia entrar en un estado plasmático.

La fusión de dos núcleos de menor masa que el hierro (que, junto con el níquel, tiene la mayor energía de enlace por nucleón) libera energía en general, mientras que la fusión de núcleos más pesados que el hierro absorbe energía; y viceversa para el proceso inverso, fisión nuclear. En el caso más simple de fusión del hidrógeno, dos protones deben acercarse lo suficiente para que la interacción nuclear fuerte pueda superar su repulsión eléctrica mutua y obtener la posterior liberación de energía.

La fusión nuclear se produce de forma natural en las estrellas. La fusión artificial también se ha logrado en varias empresas humanas, aunque todavía no ha sido totalmente controlada. Sobre la base de los experimentos de transmutación nuclear de Ernest Rutherford conducidos unos pocos años antes, la fusión de núcleos ligeros (isótopos de hidrógeno) fue observada por primera vez por Mark Oliphant en 1932; los pasos del ciclo principal de la fusión nuclear en las estrellas posteriormente fueron elaborados por Hans Bethe durante el resto de esa década. La investigación sobre la fusión para fines militares se inició en la década de 1940 como parte del Proyecto Manhattan, pero no tuvo éxito hasta 1952. La investigación sobre la fusión controlada con fines civiles se inició en la década de 1950, y continúa hasta este día.


No hay comentarios:

Publicar un comentario